Introduction to (HOKEEHE"

Eric Nagler
11/15/11



What is OQozie?

* Qozie is a workflow scheduler for Hadoop
* Originally, designed at Yahoo! for their complex search

engine workflows

* Now itis an open-source Apache incubator project

Ul Framework
HUE SDK

Workflow Scheduling Metadata
0OO0ZIE 00ZIE HIVE

Languages / Compilers
PIG, HIVE

Fast
Read/Write

Data

Integration 7 Access
O iEREE

FLUME, SQOOP

Coordination
ZOOKEEPER

Apache Hadoop - Reliable, scalable distributed storage and computing
Apache Hive - SQL-like language and metadata repository

Apache Pig - High-level language for expressing data analysis programs
Apache HBase - Hadoop database for random, real-time read/write access
Apache Zookeeper - Highly-reliable distributed coordination service
Apache Whirr - Library for running Hadoop in the cloud

Apache Flume - Distributed service for collecting and aggregating log and
event data

Apache Sqoop - Integrating Hadoop with RDBMS
Hue - Browser-based desktop interface for interacting with Hadoop

Oozie - Server-based workflow engine for Hadoop activities



What is Oozie?

* QOozie allows a user to create Directed Acyclic
Graphs of workflows and these can be ran in

parallel and sequential in Hadoop
* Oozie can also run plain java classes, Pig
workflows, and interact with the HDFS

— Nice if you need to delete or move files before a
job runs

* Qozie can run job’s sequentially (one after the
other) and in parallel (multiple at a time)



Why use Oozie instead of just
cascading a jobs one after another?

* Major flexibility
— Start, Stop, Suspend, and re-run jobs

* QOozie allows you to restart from a failure

— You can tell Oozie to restart a job from a specific
node in the graph or to skip specific failed nodes



Other Features

Java Client APl / Command Line Interface

— Launch, control, and monitor jobs from your Java
Apps

Web Service API

— You can control jobs from anywhere

Run Periodic jobs

— Have jobs that you need to run every hour, day,
week? Have Oozie run the jobs for you

Receive an email when a job is complete



How do you make a workflow?

* First make a Hadoop job and make sure that it works
using the jar command in Hadoop

— This ensures that the configuration is correct for your job
 Make a jar out of your classes

 Then make a workflow.xml file and copy all of the job
configuration properties into the xml file. These
include:

— Input files

— Output files

— Input readers and writers
— Mappers and reducers

— Job specific arguments



How do you make a workflow?

* You also need a job.properties file. This file
defines the Name node, Job tracker, etc.

* |t also gives the location of the shared jars and
other files

* When you have these files ready, you need to
copy them into the HDFS and then you can
run them from the command line



Oozie Start, End, Error Nodes

e Start Node

— Tells the application where to start
< to="“[NODE-NAME]” />

* End Node

— Signals the end of a Oozie Job
< name="“[NODE-NAME]" />

* Error Node

— Signals that an error occurred and a message
describing the error should be printed out
< name=“[NODE-NAME]” />
<message>“[A custom message]”’</message>
</ >



Oozie Action Node

 Action Nodes

— Action Nodes specify the Map/Reduce, Pig, or java
class to run

— All Nodes have ok and error tags
* Ok transitions to the next node

* Error goes to the error node and should print an error
message

<action name=“[NODE-NAME]">
<ok to=“[NODE-NAME]” />
<error to="“[NODE-NAME]” />
</action>



Oozie Map-Reduce Node

 Map/Reduce tags

— Action tag used to run a map/reduce process. You need to supply the
job tracker, name node, and your Hadoop job configuration details

<action name=“[NODE-NAME]">

< >
< >[JOB-TRACKER ADDRESS]</ >
< >[NAME-NODE ADDRESS]</ >
< >
[YOUR HADOOP CONFIGURATION]
</ >
</ >

<ok to="[NODE-NAME]” />
<error to="“[NODE-NAME]” />
</action>



Oozie Java Job Tag

e JavaJob tags

— Runs the main() function of a java class
<action name=“[NODE-NAME]">

<java>
< >[JOB-TRACKER ADDRESS]</
< >[NAME-NODE ADDRESS]</
< >
[OTHER HADOOP CONFIGURATION ITEMS]
</ >
< >[MAIN-CLASS PATH]</ >
< >[ANY —-D JAVA ARGUMENTS]</
<arg>[COMMAND LINE ARGUMENTS]</arg>
</iava>

<ok to=“[NODE-NAME]” />
<error to="[NODE-NAME]" />
</action>



Oozie File System Tag

* Fstag
— Interact with the HDFS

<action name=“[NODE-NAME]">

<fs>
< path=‘[PATH]’/>
< path=[PATH]’/>
< source=‘[PATH]’ target=‘[PATH]’/>
< path=[PATH]’ permissions=‘[PERMISSIONS]’ dir-file=‘false/
true’ />
<[fs>

<ok to="[NODE-NAME]” />
<error to=“[NODE-NAME]” />
</action>



Oozie Sub workflow tag

e Sub-workflow
— Most likely the most important node in Oozie

— Allows you to run a sub-workflow (another separate workflow) in a
job. Good for specific jobs that you will run all the time or long chains
of jobs

<action name=“[NODE-NAME]">
< >
< >[CHILD-WORKFLOW-PATH]</ >
< >
[Propagated configuration]
</ >
</ >
<ok to=“[NODE-NAME]” />
<error to=“[NODE-NAME]” />
</action>



Oozie Fork/Join Node

e Parallel Fork/Join Nodes

* Fork — Starts the parallel jobs
< >
<path start="“firstjob”>
[OTHER JOBS]
<[fork>
* Join — Parallel jobs re-join at this node. All forked

jobs must be completed to continue the
workflow

< name="“[NAME JOBS]” to=“[NEXT-NODE]"/>



Oozie Decision Nodes

e Need to make a decision?

e Decision nodes are a switch statements that will run different jobs
based on the outcome of an expression

< name=“[NODE-NAME]” >
<switch>
<case to="singlethreadedJob”>
S{fs:fileSize(lastlob) It 1 *GB}
</case>
<case to="MRJob”>
S{fs:fileSize(lastlob) ge 1 *GB}
</case>
</switch>
</ >

e Other decision points include Hadoop counters, HDFS operations,
string manipulations



Oozie Parameterization

 Parameterization helps make flexible code

* [tems like job-trackers, name-nodes, input
paths, output table, table names, other
constants should be in the job.properties file

* |f you want to use a parameter just putitina

S{}



Oozie Parameterization Example

<action name=“[NODE-NAME]">

< >
< >S{JOBTRACKER}</ >
< >S{NAMENODE}</ >
< >
< >
< >mapred.input.dir</ >
< >S{INPUTDIR}</ >
</ >
< >
< >mapred.output.dir</ >
< >S{OUTPUTDIR}</ >
</ >
[OTHER HADOOP CONFIGURATION PARAMETERS]
</ >
</ >

<ok to=“[NODE-NAME]" />
<error to=“[NODE-NAME]” />
</action>



Re-Running a Failed Job

 Hadoop job failures happen
* But, re-running or finishing your job is easy

— Two ways of accomplishing this:

e Skip Nodes (oozie.wf.rerun.skip.nodes)
— A comma separated list of nodes to skip in the next run

 ReRun Failed Nodes (oozie.wf.rerun.failnodes)

— Re Run the job from the failed node (true / false)

— Only one of these can be defined at a time
* You can only skip nodes or re run nodes, you can’t do both

— Define these in your job.properties file when you re-
run your job



What haven’t we talked about?

Coordinator (Periodic) jobs
SLA monitoring

Custom Bundled Actions
Integrating PIG

Local Oozie Runner
— Test a workflow locally to ensure that it runs



Notes

» All workflow items will start up a Map/Reduce
Job.

— Includes file system manipulations and running
Java main classes
* |f your jobs have a preparation phase, you
need to separate the preparation phase from
the execution of the job

* |f ajob fails, you can re-run it or start it back
up from where the job fails



Notes

* Qozie still thinks that you are using the old
Hadoop JobConf object. We should not be
using this object as it is depreciated. To fix
this, two properties can be added to force
Oozie to use the new configuration object

 Sometimes you may see more jobs start then
are listed in your workflow.xml file. This is
fine, there may be some prep work that Oozie
is running before a job runs



Example Workflow

§ Extract URIs
Matching

Word

Extract
Offsets

Purple: Map/Reduce Job
Blue: Java Job

22



Want to find out more?

e http://vyahoo.github.com/oozie/

e http://vahoo.github.com/oozie/releases/
3.1.0/

e http://incubator.apache.org/oozie/

23



