
© 2012 coreservlets.com and Dima May

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Apache Pig
Joining Data-Sets

Originals of slides and source code for examples: http://www.coreservlets.com/hadoop-tutorial/
Also see the customized Hadoop training courses (onsite or at public venues) – http://courses.coreservlets.com/hadoop-training.html

© 2012 coreservlets.com and Dima May

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live customized Hadoop training (including prep
for the Cloudera certification exam), please email

info@coreservlets.com
Taught by recognized Hadoop expert who spoke on Hadoop

several times at JavaOne, and who uses Hadoop daily in
real-world apps. Available at public venues, or customized

versions can be held on-site at your organization.
• Courses developed and taught by Marty Hall

– JSF 2.2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 7 or 8 programming, custom mix of topics
– Courses available in any state or country. Maryland/DC area companies can also choose afternoon/evening courses.

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Spring, Hibernate/JPA, GWT, Hadoop, HTML5, RESTful Web Services

Contact info@coreservlets.com for details

Agenda

• Joining data-sets
• User Defined Functions (UDF)

4

Joins Overview

• Critical Tool for Data Processing
• Will probably be used in most of your Pig

scripts
• Pigs supports

– Inner Joins
– Outer Joins
– Full Joins

5

How to Join in Pig

6

• Join Steps
1. Load records into a bag from input #1
2. Load records into a bag from input #2
3. Join the 2 data-sets (bags) by provided join key

• Default Join is Inner Join
– Rows are joined where the keys match
– Rows that do not have matches are not included in the result

set #1 set #2join

Simple Inner Join Example

7

--InnerJoin.pig
posts = load '/training/data/user-posts.txt' using PigStorage(',')

as (user:chararray,post:chararray,date:long);

likes = load '/training/data/user-likes.txt' using PigStorage(',')
as (user:chararray,likes:int,date:long);

userInfo = join posts by user, likes by user;

dump userInfo;

Use comma as a separator

When a key is equal in both data-sets
then the rows are joined into a new
single row; In this case when user
name is equal

1: Load records into a
bag from input #1

1:Load records into a bag from input #2

3: Join the 2 data-sets

Execute InnerJoin.pig

8

$ hdfs dfs -cat /training/data/user-posts.txt
user1,Funny Story,1343182026191
user2,Cool Deal,1343182133839
user4,Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ hdfs dfs -cat /training/data/user-likes.txt
user1,12,1343182026191
user2,7,1343182139394
user3,0,1343182154633
user4,50,1343182147364

$ pig $PLAY_AREA/pig/scripts-samples/InnerJoin.pig
(user1,Funny Story,1343182026191,user1,12,1343182026191)
(user2,Cool Deal,1343182133839,user2,7,1343182139394)
(user4,Interesting Post,1343182154633,user4,50,1343182147364)

user1, user2 and user4 are id that exist in
both data-sets; the values for these
records have been joined.

Field Names After Join

9

• Join re-uses the names of the input fields and
prepends the name of the input bag
– <bag_name>::<field_name>

grunt> describe posts;
posts: {user: chararray,post: chararray,date: long}
grunt> describe likes;
likes: {user: chararray,likes: int,date: long}

grunt> describe userInfo;
UserInfo: {

posts::user: chararray,
posts::post: chararray,
posts::date: long,
likes::user: chararray,
likes::likes: int,
likes::date: long}

Schema of the resulting Bag

Fields that were joined
from ‘posts’ bag

Fields that were joined
from ‘likes’ bag

Join By Multiple Keys

10

• Must provide the same number of keys
• Each key must be of the same type

--InnerJoinWithMultipleKeys.pig
posts = load '/training/data/user-posts.txt'

using PigStorage(',')
as (user:chararray,post:chararray,date:long);

likes = load '/training/data/user-likes.txt'
using PigStorage(',')
as (user:chararray,likes:int,date:long);

userInfo = join posts by (user,date), likes by (user,date);

dump userInfo;

Only join records whose
user and date are equal

Execute
InnerJoinWithMultipleKeys.pig

11

$ hdfs dfs -cat /training/data/user-posts.txt
user1,Funny Story,1343182026191
user2,Cool Deal,1343182133839
user4,Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ hdfs dfs -cat /training/data/user-likes.txt
user1,12,1343182026191
user2,7,1343182139394
user3,0,1343182154633
User4,50,1343182147364

$ pig $PLAY_AREA/pig/scripts/InnerJoinWithMultipleKeys.pig
(user1,Funny Story,1343182026191,user1,12,1343182026191)

There is only 1 record in each data-set
where both user and date are equal

Outer Join

12

• Records which will not join with the ‘other’ record-set
are still included in the result

Left Outer
– Records from the first data-set are included whether

they have a match or not. Fields from the unmatched
(second) bag are set to null.

Right Outer
– The opposite of Left Outer Join: Records from the

second data-set are included no matter what. Fields
from the unmatched (first) bag are set to null.

Full Outer
– Records from both sides are included. For unmatched

records the fields from the ‘other’ bag are set to null.

Left Outer Join Example

13

--LeftOuterJoin.pig
posts = load '/training/data/user-posts.txt'

using PigStorage(',')
as (user:chararray,post:chararray,date:long);

likes = load '/training/data/user-likes.txt'
using PigStorage(',')
as (user:chararray,likes:int,date:long);

userInfo = join posts by user left outer, likes by user;
dump userInfo;

Records in the posts bag will be in the
result-set even if there isn’t a match
by user in the likes bag

Execute LeftOuterJoin.pig

14

$ hdfs dfs -cat /training/data/user-posts.txt
user1,Funny Story,1343182026191
user2,Cool Deal,1343182133839
user4,Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ hdfs dfs -cat /training/data/user-likes.txt
user1,12,1343182026191
user2,7,1343182139394
user3,0,1343182154633
User4,50,1343182147364

$ pig $PLAY_AREA/pig/scripts/LeftOuterJoin.pig
(user1,Funny Story,1343182026191,user1,12,1343182026191)
(user2,Cool Deal,1343182133839,user2,7,1343182139394)
(user4,Interesting Post,1343182154633,user4,50,1343182147364)
(user5,Yet Another Blog,13431839394,,,)

User5 is in the posts data-set
but NOT in the likes data-set

Right Outer and Full Join

15

--RightOuterJoin.pig
posts = LOAD '/training/data/user-posts.txt'

USING PigStorage(',')
AS (user:chararray,post:chararray,date:long);

likes = LOAD '/training/data/user-likes.txt'
USING PigStorage(',')
AS (user:chararray,likes:int,date:long);

userInfo = JOIN posts BY user RIGHT OUTER, likes BY user;
DUMP userInfo;

--FullOuterJoin.pig
posts = LOAD '/training/data/user-posts.txt'

USING PigStorage(',')
AS (user:chararray,post:chararray,date:long);

likes = LOAD '/training/data/user-likes.txt'
USING PigStorage(',')
AS (user:chararray,likes:int,date:long);

userInfo = JOIN posts BY user FULL OUTER, likes BY user;
DUMP userInfo;

Cogroup

16

• Joins data-sets preserving structure of both sets
• Creates tuple for each key

– Matching tuples from each relationship become fields

--Cogroup.pig
posts = LOAD '/training/data/user-posts.txt'

USING PigStorage(',')
AS (user:chararray,post:chararray,date:long);

likes = LOAD '/training/data/user-likes.txt'
USING PigStorage(',')
AS (user:chararray,likes:int,date:long);

userInfo = COGROUP posts BY user, likes BY user;
DUMP userInfo;

Execute Cogroup.pig

17

$ hdfs dfs -cat /training/data/user-posts.txt
user1,Funny Story,1343182026191
user2,Cool Deal,1343182133839
user4,Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ hdfs dfs -cat /training/data/user-likes.txt
user1,12,1343182026191
user2,7,1343182139394
user3,0,1343182154633
User4,50,1343182147364

$ pig $PLAY_AREA/pig/scripts/Cogroup.pig
(user1,{(user1,Funny Story,1343182026191)},{(user1,12,1343182026191)})
(user2,{(user2,Cool Deal,1343182133839)},{(user2,7,1343182139394)})
(user3,{},{(user3,0,1343182154633)})
(user4,{(user4,Interesting Post,1343182154633)},{(user4,50,1343182147364)})
(user5,{(user5,Yet Another Blog,13431839394)},{})

Tuple per key First field is a bag which came from posts bag (first data-
set); second bag is from the likes bag (second data-set)

Cogroup with INNER

• Cogroup by default is an OUTER JOIN
• You can remove empty records with empty

bags by performing INNER on each bag
– ‘INNER JOIN’ like functionality

18

--CogroupInner.pig
posts = LOAD '/training/data/user-posts.txt'

USING PigStorage(',')
AS (user:chararray,post:chararray,date:long);

likes = LOAD '/training/data/user-likes.txt'
USING PigStorage(',')
AS (user:chararray,likes:int,date:long);

userInfo = COGROUP posts BY user INNER, likes BY user INNER;
DUMP userInfo;

Execute CogroupInner.pig

19

$ hdfs dfs -cat /training/data/user-posts.txt
user1,Funny Story,1343182026191
user2,Cool Deal,1343182133839
user4,Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ hdfs dfs -cat /training/data/user-likes.txt
user1,12,1343182026191
user2,7,1343182139394
user3,0,1343182154633
User4,50,1343182147364

$ pig $PLAY_AREA/pig/scripts/CogroupInner.pig
(user1,{(user1,Funny Story,1343182026191)},{(user1,12,1343182026191)})
(user2,{(user2,Cool Deal,1343182133839)},{(user2,7,1343182139394)})
(user4,{(user4,Interesting Post,1343182154633)},{(user4,50,1343182147364)})

Records with empty bags are removed

User Defined Function (UDF)

• There are times when Pig’s built in
operators and functions will not suffice

• Pig provides ability to implement your own
– Filter

• Ex: res = FILTER bag BY udfFilter(post);

– Load Function
• Ex: res = load 'file.txt' using udfLoad();

– Eval
• Ex: res = FOREACH bag GENERATE udfEval($1)

• Choice between several programming
languages
– Java, Python, Javascript

20

Implement Custom Filter
Function

• Our custom filter function will remove
records with the provided value of more
than 15 characters
– filtered = FILTER posts BY isShort(post);

• Simple steps to implement a custom filter
1. Extend FilterFunc class and implement exec method
2. Register JAR with your Pig Script

• JAR file that contains your implementation

3. Use custom filter function in the Pig script

21

1: Extend FilterFunc

• FilterFunc class extends EvalFunc
– Customization for filter functionality

• Implement exec method
– public Boolean exec(Tuple tuple) throws IOException
– Returns false if the tuple needs to be filtered out and true

otherwise
– Tuple is a list of ordered fields indexed from 0 to N

• We are only expecting a single field within the provided
tuple

• To retrieve fields use tuple.get(0);

22

1: Extend FilterFunc

23

public class IsShort extends FilterFunc{
private static final int MAX_CHARS = 15;

@Override
public Boolean exec(Tuple tuple) throws IOException {

if (tuple == null || tuple.isNull() || tuple.size() == 0){
return false;

}
Object obj = tuple.get(0);
if (obj instanceof String){

String st = (String)obj;
if (st.length() > MAX_CHARS){

return false;
}
return true;

}
return false;

}
}

extend FilterFunc and
implement exec function

Default to a single
field within a tuple

Filter out Strings shorter
than 15 characters

Pig’s CHARARRAY
type will cast to String

Any Object that can not cast
to String will be filtered out

2: Register JAR with Pig Script

• Compile your class with filter function and
package it into a JAR file

• Utilize REGISTER operator to supply the
JAR file to your script

– The local path to the jar file
– Path can be either absolute or relative to the execution

location
– Path must NOT be wrapped with quotes
– Will add JAR file to Java’s CLASSPATH

24

REGISTER HadoopSamples.jar

3: Use Custom Filter Function in
the Pig Script

• Pig locates functions by looking on
CLASSPATH for fully qualified class name

• Pig will properly distribute registered JAR
and add it to the CLASSPATH

• Can create an alias for your function using
DEFINE operator

25

filtered = FILTER posts BY pig.IsShort(post);

DEFINE isShort pig.IsShort();
...
...
filtered = FILTER posts BY isShort(post);
...

Script with Custom Function

26

--CustomFilter.pig
REGISTER HadoopSamples.jar
DEFINE isShort pig.IsShort();

posts = LOAD '/training/data/user-posts.txt'
USING PigStorage(',')
AS (user:chararray,post:chararray,date:long);

filtered = FILTER posts BY isShort(post);
dump filtered;

Pig custom functions are packaged in
the JAR and can be used in this script

Create a short alias for your
function

Script defines a schema; post
field will be of type chararray

Execute CustomFilter.pig

27

$ hdfs dfs -cat /training/data/user-posts.txt
user1,Funny Story,1343182026191
user2,Cool Deal,1343182133839
user4,Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ pig pig/scripts/CustomFilter.pig
(user1,Funny Story,1343182026191)
(user2,Cool Deal,1343182133839)

Posts whose length exceeds
15 characters have been
filtered out

Filter Function and Schema

28

• What would happen to pig.IsSort custom filter if
the schema was NOT defined in the script

--CustomFilter-NoSchema.pig
REGISTER HadoopSamples.jar
DEFINE isShort pig.IsShort();

posts = LOAD '/training/data/user-posts.txt'
USING PigStorage(',');

filtered = FILTER posts BY isShort($1);
dump filtered;

LOAD does not
define schema

Since no schema defined will need to
reference second field by an index

Execute CustomFilter-
NoSchema.pig

29

$ hdfs dfs -cat /training/data/user-posts.txt
user1,Funny Story,1343182026191
user2,Cool Deal,1343182133839
user4,Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ pig pig/scripts/CustomFilter-NoSchema.pig
$

Why did CustomFilter-NoSchema.pig
produce no results?

Why did CustomFilter-NoSchema.pig
Produce no Results?

30

• Recall that the script doesn’t define schema on
LOAD operation

• When type is not specified Pig default to
bytearray – DataByteArray class

• Recall our custom implementation IsShort.exec

posts = LOAD '/training/data/user-posts.txt'
USING PigStorage(',');

filtered = FILTER posts BY isShort($1);

Object obj = tuple.get(0);
if (obj instanceof String){

...

...
}
return false;

Since script never defined
schema obj will be of type
DataByteArray and filter
will remove ALL records

Make IsShort Function Type
Aware

31

• Override getArgToFuncMapping method on
EvalFunc, parent of FilterFunc
– Specify expected type of the functions parameter(s)
– Method returns a List of User Defined Functions (UDF)

specifications – FuncSpec objects
– Each object represents a parameter field
– In our case we just need to provide a single FuncSpec object to

describe field’s type

filtered = FILTER posts BY isShort($1);

FuncSpec object will describe
function’s parameter

GetArgToFuncMapping method
of IsShortWithSchema.java

32

@Override
public List<FuncSpec> getArgToFuncMapping()

throws FrontendException {
List<FuncSpec> schemaSpec = new ArrayList<FuncSpec>();

FieldSchema fieldSchema = new FieldSchema(
null,
DataType.CHARARRAY);

FuncSpec fieldSpec = new FuncSpec(
this.getClass().getName(),
new Schema(fieldSchema));

schemaSpec.add(fieldSpec);
return schemaSpec;

}

First argument is field alias and is
ignored for type conversion

Second argument is the type –
CHARARRAY that will cast to String

Returns FuncSpec object that
describes metadata about each field

Name of the function

Schema for the function;
in this case just one field

CustomFilter-NoSchema.pig

33

--CustomFilter-NoSchema.pig
REGISTER HadoopSamples.jar
DEFINE isShort pig.IsShortWithSchema();

posts = LOAD '/training/data/user-posts.txt'
USING PigStorage(',');

filtered = FILTER posts BY isShort($1);

dump filtered;

Improved
implementation of filter
with type specification

This Pig script still does
NOT specify type of the
function’s parameter

Execute CustomFilter-
NoSchema.pig

34

$ hdfs dfs -cat /training/data/user-posts.txt
user1,Funny Story,1343182026191
user2,Cool Deal,1343182133839
user4,Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ pig pig/scripts/CustomFilter-WithSchema.pig
(user1,Funny Story,1343182026191)
(user2,Cool Deal,1343182133839)

Improved implementation specified the parameter
type to be CHARARRAY which will then cast to
String type

© 2012 coreservlets.com and Dima May

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Wrap-Up

Summary

• We learned about
– Joining data-sets
– User Defined Functions (UDF)

36

© 2012 coreservlets.com and Dima May

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?
More info:

http://www.coreservlets.com/hadoop-tutorial/ – Hadoop programming tutorial
http://courses.coreservlets.com/hadoop-training.html – Customized Hadoop training courses, at public venues or onsite at your organization

http://courses.coreservlets.com/Course-Materials/java.html – General Java programming tutorial
http://www.coreservlets.com/java-8-tutorial/ – Java 8 tutorial

http://www.coreservlets.com/JSF-Tutorial/jsf2/ – JSF 2.2 tutorial
http://www.coreservlets.com/JSF-Tutorial/primefaces/ – PrimeFaces tutorial

http://coreservlets.com/ – JSF 2, PrimeFaces, Java 7 or 8, Ajax, jQuery, Hadoop, RESTful Web Services, Android, HTML5, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training

