© 2012 coreservlets.com and Dima May

Apache Pig
Joining Data-Sets

Originals of slides and source code for examples: http://www.coreservlets.com/hadoop-tutorial/
Also see the customized Hadoop training courses (onsite or at public venues) — http://courses.coreservlets.com/hadoop-training.html

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

© 2012 coreservlets.com and Dima May

more
SERVLETS ang
JAVASERVER PAGES

C-o?e IMp tDimoN
SERVLETS and
JAVASERVER PAGES

y

For live customized Hadoop training (including prep
for the Cloudera certification exam), please email
Info@coreservlets.com

Taught by recognized Hadoop expert who spoke on Hadoop
several times at JavaOne, and who uses Hadoop daily in
real-world apps. Available at public venues, or customized
versions can be held on-site at your organization.

‘ ?P{!Qg@ Courses developed and taught by Marty Hall
—JSF 2.2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 7 or 8 programming, custom mix of topics
— Courses available in any state or country. Maryland/DC area companies can also choose afternoon/evening courses.

pJS F Courses developed and taught by coreservlets.com experts (edited by Marty)

— Spring, Hibernate/JPA, GWT, Hadoop, HTML5, RESTful Web Services
Contact info@coreservlets.com for details

Agenda

e Joining data-sets
* User Defined Functions (UDF)

Joins Overview

e Critical Tool for Data Processing

* Will probably be used in most of your Pig
scripts
* Pigs supports
— Inner Joins
— Outer Joins
— Full Joins

How to Join in Pig

« Join Steps
1. Load records into a bag from input #1
2. Load records into a bag from input #2
3. Join the 2 data-sets (bags) by provided join key
o Default Join is Inner Join
— Rows are joined where the keys match
— Rows that do not have matches are not included in the result

set #1 join set #2

Simple Inner Join Example

1: Load records into a
_—InnerJoin.pig | bag from input #1
posts = load "/training/data/user-posts.txt" using PigStorage(”, ")

as (user:chararray,post:chararray,date:long);

1:Load records into a bag from input #2 Use comma as a separator

likes = load "/training/data/user-likes.txt" using PigStorage(", ")
as (user:chararray, likes:int,date:long);

userinfo = join posts by user, likes by user;

N\

3: Join the 2 data-sets

When a key is equal in both data-sets
then the rows are joined into a new
single row; In this case when user
name is equal

dump userlinfo;

Execute InnerJoin.pig

$ hdfs dfs -cat /training/data/user-posts.txt
userl,Funny Story,1343182026191

user2,Cool Deal,1343182133839

user4, Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ hdfs dfs -cat /training/data/user-likes.txt
userl,12,1343182026191
user2,7,1343182139394
user3,0,1343182154633
user4,50,1343182147364

$ pig $PLAY_AREA/pig/scripts-samples/InnerJoin.pig
(userl,Funny Story,1343182026191,user1,12,1343182026191)
(user2,Cool Deal,1343182133839,user2,7,1343182139394)

(user4, Interesting Post,1343182154633,user4,50,1343182147364)

userl, user2 and user4 are id that exist in
both data-sets; the values for these
records have been joined

Field Names After Join

« Join re-uses the names of the input fields and
prepends the name of the input bag
— <bag_name>::<field_name>

grunt> describe posts;

posts: {user: chararray,post: chararray,date: long}
grunt> describe likes;

likes: {user: chararray,likes: int,date: long}

grunt> describe userlinfo; Schema of the resulting Bag

Userinfo: {
posts::user: chararray, riggs that were joined
posts::post: chararray, from ‘posts’ bag
posts::date: long,
likes::user: chararray,
likes::likes: int,
likes::date: long}

Fields that were joined
from ‘likes’ bag

Join By Multiple Keys

* Must provide the same number of keys
 Each key must be of the same type

—-—-InnerJoinWithMultipleKeys.pig
posts = load "/training/data/user-posts.txt”
using PigStorage(®,")
as (user:chararray,post:chararray,date:long);

likes = load "/training/data/user-likes.txt"
using PigStorage(®,")
as (user:chararray, likes:int,date:long);

userInfo = join posts by (user,date), likes by (user,date);

dump userlinfo;

Only join records whose
user and date are equal

Execute
InnerJoinWithMultipleKeys.pig

$ hdfs dfs -cat /training/data/user-posts.txt
userl,Funny Story,1343182026191

user2,Cool Deal,1343182133839

user4, Interesting Post,1343182154633

user5,Yet Another Blog,13431839394

$ hdfs dfs -cat /training/data/user-likes.txt
userl,12,1343182026191
user2,7,1343182139394
user3,0,1343182154633
User4,50,1343182147364

$ pig $PLAY_AREA/pig/scripts/InnerJoinWithMultipleKeys.pig
(userl,Funny Story,1343182026191,user1,12,1343182026191)

There is only 1 record in each data-set
where both user and date are equal

Outer Join

* Records which will not join with the ‘other’ record-set
are still included in the result

Left Outer
— Records from the first data-set are included whether

they have a match or not. Fields from the unmatched
(second) bag are set to null.

Right Outer
— The opposite of Left Outer Join: Records from the

second data-set are included no matter what. Fields
from the unmatched (first) bag are set to null.

Full Outer
— Records from both sides are included. For unmatched

records the fields from the “other’ bag are set to null.

Left Outer Join Example

--LeftOuterJoin.pig
posts = load "/training/data/user-posts.txt-

using PigStorage(~™, ")
as (user:chararray,post:chararray,date:long);
likes = load "/training/data/user-likes.txt"

using PigStorage(~, ")
as (user:chararray, likes:int,date:long);

userInfo = join posts by user left outer, likes by user;

dump userlinfo;

Records in the posts bag will be in the
result-set even if there isn’t a match

by user in the likes bag

Execute LeftOuterJoin.pig

$ hdfs dfs -cat /training/data/user-posts.txt
userl,Funny Story,1343182026191

user2,Cool Deal,1343182133839

user4, Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ hdfs dfs -cat /training/data/user-likes.txt
userl,12,1343182026191
user2,7,1343182139394
user3,0,1343182154633
User4,50,1343182147364

$ pig $PLAY_AREA/pig/scripts/LeftOuterJdoin.pig

(userl,Funny Story,1343182026191,user1,12,1343182026191)
(user2,Cool Deal,1343182133839,user2,7,1343182139394)

(user4, Interesting Post,1343182154633,user4,50,1343182147364)
(user5,Yet Another Blog,1343183939%4,,,)

User5 is in the posts data-set
but NOT in the likes data-set

Right Outer and Full Join

--RightOuterJoin.pig
posts = LOAD "/training/data/user-posts.txt*
USING PigStorage(™,")
AS (user:chararray,post:chararray,date:long);
likes = LOAD "/training/data/user-likes.txt"
USING PigStorage(~,")
AS (user:chararray, likes:int,date:long);
userinfo = JOIN posts BY user RIGHT OUTER, likes BY user;
DUMP userlinfo;

--FullOuterJdoin.pig
posts = LOAD "/training/data/user-posts.txt*

USING PigStorage(~™,")

AS (user:chararray,post:chararray,date:long);
likes = LOAD "/training/data/user-likes.txt"

USING PigStorage(~™,")

AS (user:chararray, likes:int,date:long);
userinfo = JOIN posts BY user FULL OUTER, likes BY user;
DUMP userlinfo;

Cogroup

* Joins data-sets preserving structure of both sets

e Creates tuple for each key
— Matching tuples from each relationship become fields

--Cogroup.pig
posts = LOAD "/training/data/user-posts.txt”

USING PigStorage(-,")

AS (user:chararray,post:chararray,date:long);
likes = LOAD "/training/data/user-likes.txt"

USING PigStorage(~,")

AS (user:chararray, likes:int,date:long);
userInfo = COGROUP posts BY user, likes BY user;
DUMP userinfo;

Execute Cogroup.pig

$ hdfs dfs -cat /training/data/user-posts.txt
userl,Funny Story,1343182026191
user2,Cool Deal,1343182133839
userd,Interesting Post, 1343182154633
user5,Yet Another Blog,13431839394

$ hdfs dfs -cat /training/data/user-likes.txt
user1,12,1343182026191
user2,7,1343182139394
user3,0,1343182154633
User4,50,1343182147364

$ pig $PLAY_AREA/pig/scripts/Cogroup.pig

(userl,{(userl,Funny Story,1343182026191)},{(userl,12,1343182026191)})
(user2,{(user2,Cool Deal,1343182133839)} {(user2,7,1343182139394)})
(user3,{}{(user3,0,1343182154633)})

(userd {(userd,Interesting Post,1343182154633)},{(user4,50,1343182147364)})
(user5,{(user5,Yet Another Blog,13431839394)} {})

Tuple per key First field is a bag which came from posts bag (first data-
set); second bag is from the likes bag (second data-set)

Cogroup with INNER

e Cogroup by default is an OUTER JOIN

 You can remove empty records with empty
bags by performing INNER on each bag
— ‘INNER JOIN’ like functionality

--Cogrouplnner.pig
posts = LOAD "/training/data/user-posts.txt”
USING PigStorage(®,")
AS (user:chararray,post:chararray,date:long);
likes = LOAD "/training/data/user-likes.txt"
USING PigStorage(®,")
AS (user:chararray, likes:int,date:long);
userinfo = COGROUP posts BY user INNER, likes BY user INNER;
DUMP userinfo;

Execute Cogrouplinner.pig

$ hdfs dfs -cat /training/data/user-posts.txt
userl,Funny Story,1343182026191
user2,Cool Deal,1343182133839
user4,Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ hdfs dfs -cat /training/data/user-likes.txt
userl,12,1343182026191
user2,7,1343182139394
user3,0,1343182154633
User4,50,1343182147364

$ pig $PLAY_AREA/pig/scripts/Cogrouplnner.pig

(userl,{(userl,Funny Story,1343182026191)},{(user1,12,1343182026191)})
(user2,{(user2,Cool Deal,1343182133839)},{(user2,7,1343182139394)})
(user4,{(user4,Interesting Post,1343182154633)},{(user4,50,1343182147364)})

Records with empty bags are removed

User Defined Function (UDF)

 There are times when Pig’s built in
operators and functions will not suffice

* Pig provides ability to implement your own
— Filter
* Ex: res = FILTER bag BY udfFilter(post);
— Load Function
* Ex: res = load 'file.txt' using udfLoad();
— Eval
* Ex: res = FOREACH bag GENERATE udfEval($1)
 Choice between several programming
languages
— Java, Python, Javascript

Implement Custom Filter
Function

e Our custom filter function will remove
records with the provided value of more
than 15 characters
— filtered = FILTER posts BY isShort(post);

« Simple steps to implement a custom filter
1. Extend FilterFunc class and implement exec method

2. Register JAR with your Pig Script
* JAR file that contains your implementation
3. Use custom filter function in the Pig script

1: Extend FilterFunc

e FilterFunc class extends EvalFunc
— Customization for filter functionality

* Implement exec method
— public Boolean exec(Tuple tuple) throws IOEXxception

— Returns false if the tuple needs to be filtered out and true
otherwise

— Tuple is a list of ordered fields indexed from 0 to N

« We are only expecting a single field within the provided
tuple

* To retrieve fields use tuple.get(0);

1: Extend FilterFunc

public class IsShort extends FilterFunc{
private static final int MAX_CHARS = 15; extend FilterFunc and
implement exec function

@0override PR
public Boolean exec(Tuple tuple) throws 10Exception {
it (tuple == null |] tuple.isNull() || tuple.size() == 0){
return false;

} Default to a single

Object obj = tuple.get(0); field within a tuple

if (obj instanceof String){
§tring st = (String)obj; Pig’'s CHARARRAY
if (st.length() > MAX_CHARS){ type will cast to String

return false;

bs
return true; . _

3} Filter out Strings shorter

return false; than 15 characters

}
} Any Object that can not cast

to String will be filtered out

2. Register JAR with Pig Script

« Compile your class with filter function and
package it into a JAR file

» Utilize REGISTER operator to supply the
JAR file to your script

REGISTER HadoopSamples. jar

— The local path to the jar file

— Path can be either absolute or relative to the execution
location

— Path must NOT be wrapped with quotes
— Will add JAR file to Java’s CLASSPATH

3: Use Custom Filter Function In
the Pig Script

* Pig locates functions by looking on
CLASSPATH for fully qualified class name

filtered = FILTER posts BY pig.IsShort(post);

* Pig will properly distribute registered JAR
and add it to the CLASSPATH

e Can create an alias for your function using
DEFINE operator

DEFINE isShort pig.IsShort();

%iitered = FILTER posts BY isShort(post);

Script with Custom Function

--CustomFilter.pig Pig custom functions are packaged in
REGISTER HadoopSamp les -j ar the JAR and can be used in this script
DEFINE 1sShort pig.IsShort();

Create a short alias for your
function

posts = LOAD "/training/data/user-posts.txt”
USING PigStorage(~,")
AS (user:chararray,post:chararray,date:long);

Script defines a schema; post
field will be of type chararray

filtered = FILTER posts BY i1sShort(post);
dump filtered;

Execute CustomFilter.pig

$ hdfs dfs -cat /training/data/user-posts.txt
userl,Funny Story,1343182026191

user2,Cool Deal,1343182133839

user4, Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ pig pig/scripts/CustomFilter.pig
(userl,Funny Story,1343182026191)
(user2,Cool Deal,1343182133839)

Posts whose length exceeds
15 characters have been
filtered out

Filter Function and Schema

 What would happen to pig.IsSort custom filter if
the schema was NOT defined in the script

—-—CustomFilter-NoSchema.pig
REGISTER HadoopSamples.jar
DEFINE isShort pig.IsShort();

posts = LOAD */training/data/user-posts.txt”

USING PigStorage(”,"); LOAD does not

define schema

Since no schema defined will need to
reference second field by an index

filtered = FILTER posts BY isShort($1);
dump filtered;

Execute CustomkFilter-
NoSchema.pig

$ hdfs dfs -cat /training/data/user-posts.txt
userl,Funny Story,1343182026191

user2,Cool Deal,1343182133839

user4, Interesting Post,1343182154633
user5,Yet Another Blog, 13431839394

$ pig pig/scripts/CustomFilter-NoSchema.pig
$

Why did CustomFilter-NoSchema.pig
produce no results?

Why did CustomFilter-NoSchema.pig
Produce no Results?

* Recall that the script doesn’t define schema on
LOAD operation
posts = LOAD "/training/data/user-posts.txt*”

USING PigStorage(~,");
filtered = FILTER posts BY isShort($1l);

 When type is not specified Pig default to
bytearray — DataByteArray class

Recall our custom implementation IsShort.exec
Object obj = tuple.get(0);

if (obj instanceof String){ Since script never defined
) schema obj will be of type

T DataByteArray and filter
Y T will remove ALL records
return false;

Make IsShort Function Type
Aware

e Override getArgToFuncMapping method on
EvalFunc, parent of FilterFunc
— Specify expected type of the functions parameter(s)

— Method returns a List of User Defined Functions (UDF)
specifications — FuncSpec objects

— Each object represents a parameter field

— In our case we just need to provide a single FuncSpec object to
describe field’s type

filtered = FILTER posts BY isShort(%$1);

FuncSpec object will describe
function’s parameter

GetArgToFuncMapping method
of IsShortWithSchema.java

@Override
public List<FuncSpec> getArgToFuncMapping()
throws FrontendException {
List<FuncSpec> schemaSpec = new ArrayList<FuncSpec>();

FieldSchema fieldSchema = new FieldSchema(

null, First argument is field alias and is
DataType.CHARARRAY) ; ignored for type conversion

Second argument is the type —
CHARARRAY that will cast to String
FuncSpec fieldSpec = new FuncSpec(

this.getClass() -getName(), Name of the function
new Schema(fieldSchema));

Schema for the function;
in this case just one field

schemaSpec.add(fieldSpec);
return schemaSpec; Returns FuncSpec object that
b5 describes metadata about each field

CustomFilter-NoSchema.pig

—-CustomFilter-NoSchema.pig Improved
REGISTER HadoopSamples.jar implementation of filter
DEFINE isShort pig.IsShortWithSchema(); with type specification

posts = LOAD "/training/data/user-posts.txt-”

USING PigStorage(®,"); N . _
g ge(".") This Pig script still does

filtered = FILTER posts BY isShort($1); NOT specify type of the
function’s parameter

dump filtered;

Execute CustomkFilter-
NoSchema.pig

$ hdfs dfs -cat /training/data/user-posts.txt
userl,Funny Story,1343182026191

user2,Cool Deal,1343182133839

user4, Interesting Post,1343182154633
user5,Yet Another Blog,13431839394

$ pig pig/scripts/CustomFilter-WithSchema.pig
(userl,Funny Story,1343182026191)
(user2,Cool Deal,1343182133839)

Improved implementation specified the parameter
type to be CHARARRAY which will then cast to
String type

© 2012 coreservlets.com and Dima May

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

Summary

 We learned about
— Joining data-sets
— User Defined Functions (UDF)

© 2012 coreservlets.com and Dima May

Questions?

More info:
http://www.coreservlets.com/hadoop-tutoriall — Hadoop programming tutorial
http://courses.coreservlets.com/hadoop-training.html — Customized Hadoop training courses, at public venues or onsite at your organization
http://courses.coreservlets.com/Course-Materials/java.html — General Java programming tutorial
http://www.coreservlets.com/java-8-tutorial/ — Java 8 tutorial
http://www.coreservlets.com/JSF-Tutorial/jsf2/ — JSF 2.2 tutorial
http://www.coreservlets.com/JSF-Tutorial/primefaces/ — PrimeFaces tutorial
http://coreservlets.com/ — JSF 2, PrimeFaces, Java 7 or 8, Ajax, jQuery, Hadoop, RESTful Web Services, Android, HTML5, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE trainin

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

